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We propose an order index, �, which gives a quantitative measure of randomness and order of complete
genomic sequences. It maps genomes to a number from 0 �random and of infinite length� to 1 �fully ordered�
and applies regardless of sequence length. The 786 complete genomic sequences in GenBank were found to
have � values in a very narrow range, �g=0.031−0.015

+0.028. We show this implies that genomes are halfway toward
being completely random, or, at the “edge of chaos.” We further show that artificial “genomes” converted from
literary classics have �’s that almost exactly coincide with �g, but sequences of low information content do
not. We infer that �g represents a high information-capacity “fixed point” in sequence space, and that genomes
are driven to it by the dynamics of a robust growth and evolution process. We show that a growth process
characterized by random segmental duplication can robustly drive genomes to the fixed point.
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I. INTRODUCTION

The edge of chaos originally refers to the state of a com-
putational system, such as cellular automata, when it is close
to a transition to chaos, and gains the ability for complex
information processing �1–3�. The notion has since been
used to describe biological states, and life in general, on the
assumption that life necessarily involves complex computa-
tion �4�. In model systems such as cellular automata, there
are well defined procedures for recognizing the change in
computational capability during the transition from noncha-
otic to chaotic states �1,3�. However, these have not been
adapted to the wider biological context, even for the simplest
of organisms. But if we represent a living organism by its
genome, view evolution as a dynamical process that drives
genomes in the space of sequences, and consider chaos as a
state of genome randomness, then we have a framework
within which the meaning of “life occurs at the edge of
chaos” may be investigated. Genomes, linear sequences writ-
ten in the four chemical letters, or bases, A �adenine�, C
�cytosine�, G �guanine�, and T �thymine� and often referred
to as books of life, regulate the functioning of organisms
through the many kinds of codes embedded in them �there
are also nontextual posttranslational regulations; see, e.g.,
�5��. When genomes are seen as texts, they have several key
properties reflecting their complexity, including long-range
correlations and scale invariance �6–11�, self-similarity
�12–15�, fractal property �16,17�, and distinctive Shannon
redundancy �18–20�. However, these properties do not give a
measure of the proximity of a genome to chaos or random-
ness. Before the edge-of-chaos notion can be explored, one
needs to have a quantity that measures the randomness of
genomes as texts.

II. DEFINITION OF ORDER INDEX

Here we analyze a genomic sequence of length L �in
bases� in terms of the frequency of occurrence of k-letter

words, called k-mers, where k is a small integer, and denote
the set of all ��4k types of k-mers by S. Given a sequence,
we count the frequency of occurrence �or frequency� fu of
each k-mer type u in S using an overlapping sliding window
of width k and slide one �17�. The sum of the frequencies is
�u�Sfu=L−k+1, approximated by L. Let the fractional A/T
and C/G content of a sequence be denoted by p and q=1
− p, respectively. Whereas the A/T to C/G ratio, or p /q, var-
ies widely from genome to genome, the well-verified Char-
gaff’s second parity rule �21–23� states that in any long
stretch of a single strand of genomic sequence the A:T and
C:G ratios are both invariably close to 1. This property sug-
gests a binary partition of S into subsets �m sets� Sm, m=0 to
k, where each of the �m= � k

m �2k types of k-mers in Sm contain
m and only m A/T’s �note that �m�m=�2−k�m� k

m �=�� �24�.
For example, in the case of k=2, S0 is the set CC, CG, GC,
and GG; S1 is the set CA, CT, GA, GT, AC, AG, TC, and
TG; and S2 is the set AA AT, TA, and TT. Let Lm=�u�Sm

fu

be the frequency sum of k-mers in Sm, then �mLm=L. In a
p-valued infinitely long random sequence that obeys Char-
gaff’s second parity rule �always assumed unless otherwise
stated�, the relative frequency of a k-mer belonging to the m
set is pmqk−m, hence Lm

��� /L=limL→� Lm /L=2−k�mpmqk−m.
For k�2, we define the kth order index for the sequence as

�k �
1

�2 − 2�pk + qk���m
1

L
	Lm − Lm

���	 . �1�

The definition of the index is based on the observation that as
a sequence �or any sample� approaches randomness, its dis-
tribution approaches uniformity, here represented by Lm ap-
proaching Lm

���. The definition of � is different, as it is based
on distribution averages, as opposed to the more conven-
tional distribution variances. We emphasize that our ap-
proach would not work without the m-set partition, nor if the
nucleotide mapping were purine-pyrimidine or amino-keto
instead of weak-strong �see below�. By definition �k will be
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small for long random sequences and approaches zero as-
ymptotically for any k with increasing random sequence
length. In what follows, we will often suppress the subscript
k from �k when we speak of generic properties of the index;
later we will see that for small k’s the index has only a mild
k dependence. The p-dependent normalization factor on the
right-hand side of Eq. �1� ensures that �
1 for an “ordered”
sequence �in which all A/T’s are, say, on the 5� end and all
C/G’s are on the 3� end�, and approaches 1 as L approaches
�. The singularities at p=0 and 1 do not pose a practical
problem since no genome has such extreme base composi-
tions �� has well-defined p→1 and p→0 limits�. In defining
� we relied on an important property of �m�Lm−Lm

���: as a
sequence becomes more random, the frequency distribution
of its k-mers �within an m set� will approach a random dis-
tribution and 	�m	 will become smaller. Computing �m sepa-
rately for each m set also causes � to be largely insensitive to
p and makes it meaningful to define � for a sequence that is
compositionally heterogeneous, and to compare �’s of com-
positionally diverse genomes. There should be many other
ways to quantify randomness/order but as we shall see be-
low, � has some remarkable properties that make it an espe-
cially useful metric.

III. GENERAL PROPERTIES OF �

Because an Lm is measured separately for each m set, it is
possible for sequences having quite different base composi-
tions �different p’s� or word contents, or both, to have very
similar �’s. If the word contents of two sequences are simi-
lar, then they will have approximately equal �’s, and the
concatenate of the two will have a similar �. Generally, the
concatenate of two �nonrandom� sequences will have a �
that is equal or less than the larger of the �’s of the compo-

nents �this is analogous to entropy�. When the word contents
of two �-similar sequences are set complement, then the �
of the concatenation of the two sequences will be drastically
reduced. Here “complement” is employed in the sense of set
theory, not in the sense of nucleotides. We use a pair of
simple artificial sequences to illustrate this point. Consider
the k=2 m sets in two very long �L→��, equal-length, and
even-composition sequences: the ordered sequence X and the
“checkerboard” �A/T in odd sites are and C/G in even sites�
sequence Y. In X, the eight 2-mers in S0 and S2 have fre-
quencies equal to L /8 and the eight 2-mers in S1 have zero
frequency. The opposite is true in Y; those in S0 and S2 have
zero frequency and those in S1 have frequencies equal to
L /8. The two sets of word contents in X and Y are said to be
set complement. We have �X=1 and �Y =1, but the concat-
enate XY of the two sequences has �XY =0; see Table I for
details. There is huge range of possibilities between exactly
the same and exact set complementarity. In Table I, XU and
YV are examples of different degrees of �word-content� simi-
larity and XV, YU, and UV are examples of set complemen-
tarity. In any case a significant reduction in the � of a con-
catenate is sufficient evidence that the word contents of the
two component sequences are more set complement than
similar.

For random sequences, � is approximately L−1/2. We ex-
amine the properties of � using random sequences. From the
central limit theory we expect �for random sequences� 	�m	 to
scale as Lm

−1/2. We therefore expect � to be proportional to
L−1/2 on average.

The log-log plots in Figs. 1�a� and 1�b� show � as a
function of sequence length for different k’s and p’s. Each
datum is averaged over 500 random sequences. It is seen that
� scales very well as L−1/2 �with sizable fluctuations� and is
only weakly dependent on k and p. These results can be

TABLE I. The k=2 order index of artificial ordered, checkerboard long �L→�� sequences and their concatenates.

Sequence Description p N�
a

Lm
��� /L Lm /L

�k=2m=0 m=1 m=2 m=0 m=1 m=2

X “Ordered”b; 50%A/T, 50%C/G 0.5 1 0.25 0.5 0.25 0.5 0 0.5 1

Y “Checkerboard”c 0.5 1.0 0.25 0.5 0.25 0 1 0 1

U Ordered; 40%A/T, 60%C/G 0.4 0.96 0.36 0.48 0.16 0.6 0 0.4 1

V 80% checkerboard, 20% A/T 0.60 0.96 0.16 0.48 0.36 0 0.8 0.2 0.67

R Random 0.5 1 0.25 0.5 0.25 0.25 0.5 0.25 0

XY d X and Y set complement 0.5 1.0 0.25 0.5 0.25 0.25 0.5 0.25 0e

XU X and U similar 0.45 0.99 0.303 0.495 0.203 0.55 0 0.45 1.00

XV X and V nearly set complement 0.55 0.99 0.203 0.495 0.303 0.25 0.4 0.35 0.19

YU Y and U nearly set complement 0.45 0.99 0.303 0.495 0.203 0.3 0.5 0.2 0.01

YV Y and V similar 0.55 0.99 0.203 0.495 0.303 0 0.9 0.1 0.81

UV U and V nearly set complement 0.5 1.0 0.25 0.5 0.25 0.3 0.4 0.3 0.20

RV Mixing randomness and ordered 0.55 0.99 0.203 0.495 0.303 0.125 0.65 0.225 0.30

aNormalizing denominator in Eq. �1�.
bAll A and T �in equal portions� on the 5� end and all C and G on the 3� end.
cOdd sites are A/T �with equal probability� and even sites are C/G.
dXY is the concatenate of the X and Y.
eThat XY is not random but has � exactly equal to zero should be viewed as an artificial “accident” that does not occur in genomic sequences.
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summarized for all k and p by an empirical relation:

��ran� = c�L−��, �2�

with ��
�ran�=0.50�0.01 and c�

�ran�=1.0�0.2 or, to a good
approximation, ��ran�
L−1/2. This leads to the convenient
concept of an �approximately k-independent� equivalent
length for a �-valued sequence,

Leq��� � �−2, �3�

the nominal length of a random sequence whose order index
is �.

In Fig. 1�b�, the weak dependence of � on p is a conse-
quence of the m-set partition of k-mers, designed specifically
for the binary G/C versus A/T grouping, also known as
strong-weak mapping, of nucleic letters. Two others, the
purine-pyrimidine �A/G versus C/T� and amino-keto �A/C
versus G/T� mappings, have also been used as binary reduc-
tions in DNA analysis �6–8�. The existence of Chargaff’s
second parity rule renders the strong-weak mapping special,
and neither of the other two mappings will yield results simi-
lar to Figs. 1�a� and 1�b� and summarized in Eq. �2�. To be
specific we discuss the purine-pyrimidine mapping �the argu-
ment works similarly for the amino-keto mapping�. In such a
mapping all genomic sequences will have p� �=pAG� very
close the 0.5 �thanks to Chargaff’s second parity rule�, which
would seem to remove the need to view p� as a variable for
consideration. Suppose we carry out an m-set partition of the
k-mers as before, by putting all k-mers with m AG’s in an m
set. However, unless p�=pAT�=0.5, the frequency distribution
of the k-mers in an m set will be multimodal �k+1 modes to
be precise� instead of unimodal as before �24�. In other
words, the k-mers can have highly nonuniform frequencies
even in a random sequence of infinite length, so that there is
not a natural quantity corresponding to Lm. If we define

Lm
���=L�m /� �because p�=q�=0.5, see Eq. �1�� regardless,

then we will not have the result given in Eq. �2�, namely, a
��ran� that always vanishes as L→�, but instead a ��ran� that
depends strongly with p and which, when p deviates signifi-
cantly from 0.5, remains finite at all lengths. Neither will we
get results for a genome that are easy to summarize �see
below�. In fact, the difference between the strong/weak map-
ping and the alternative mappings discussed above is the
main reason why statistic properties of genomes are the least
ambiguous when the strong/weak mapping is used
�6–8,20,25�.

A. Order index decays exponentially with rate of point
mutation

Random events such as point mutations acting on a non-
random sequence decreases its order, and hence its �. Figure
1�c� shows that the � of a p=0.5, 20 Mb ordered sequence,
decreases exponentially with the number of mutations N	,
until N	 reaches a critical number N	c. The critical value
reflects the fact that the randomness of an already-random
sequence cannot be increased. In other words, if one thinks
of a random point mutation as a dynamical action taking a
sequence from one point in the sequence space to another,
then a randomized sequence is a fixed point of the action.
Our studies of initially ordered sequences having a variety of
lengths and base compositions yield

� = �exp�− 2N	/L�, N	 
 N	c

�c 
 L−1/2, N	 � N	c,
� �4�

where N	c
�1 /4�L ln L is the number of mutations after
which the sequence becomes random, or “critical,” hence we
define the critical mutation rate as

	c � N	c/L 
 �1/4�ln L . �5�

This formula for N	c compares well with simulation. In the
case of Fig. 1�c�, the coordinates of the simulation �k=4�
critical point are ��c ,N	c�= �2.2�10−4 ,8.5�107�, as com-
pared to the values �2.2�10−4 ,8.4�107� given by Eqs. �4�
and �5�. For typical sequences of genomic length �L

107�1 Mb�, 	c=4.0�0.6 mutations per base �b−1�. We
use Eq. �4� to assign to a �-valued sequence �before it be-
comes critical� an equivalent mutation rate,

	eq��� � ln �−1/2, �6�

the nominal number of random point mutations per base re-
quired to bring the index of an ordered sequence to �.

Equation �4� can be adapted for application to sequences
not initially ordered. For example, the equivalent mutation
rate for the 4.6 Mb genome of E. coli ��=0.049� is 1.5 b−1.
Since for a 4.6 Mb sequence 	c=3.8 b−1, one expects an
additional 2.3�4.6�106=1.1�107 mutations are needed to
randomize it. In the simulation shown in Fig. 1�d�, the actual
number needed is found to be �1.1�0.1��107.

B. Positions of k-mers in genomes are essentially uncorrelated

Although a casual glance at a genomic sequence is suffi-
cient to see that it is very far from being ordered, here, before

FIG. 1. �Color online� �a� Log-log plot of order index, �, vs
length of random sequence for p=0.5 and k=2–6. �b� Same as �a�;
for k=4 and p=0.20–0.50. �c� Semi-log plot of � vs N	, number of
random point mutations, for an initially ordered 20 Mb, p=0.5 se-
quence. The intersection of the lines is the critical point where
sequence becomes random. �d� Same as �c�; initial sequence is ge-
nome of E. coli.
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computing the �’s for genomic sequences, we use a conven-
tional method to show qualitatively that genomes are close to
being random. Given a specific k-mer u, we consider the
distribution N�x� of intervals x of adjacent pairs of u’s in a
sequence. If the positions of the u’s are uncorrelated, as they
would be in a random sequence, then the distribution will fall
along the exponential given by

N�ran��x� = N0e−x/xu �7�

where xu=L / fu is the average interval, fu is the frequency of
u, L is the sequence length, and N0= fu

2 /L. Figure 2�a� shows
that the interval distributions of three 4-mers in the genome
of E. coli are quite well represented by Eq. �7�. In each case
the small scattering along the exponential indicates that the u
sites are not entirely uncorrelated. Let −du be the linear re-
gression of the logarithm of an interval distribution. If the
distribution is given exactly by N�ran��x� then du=xu. In Fig.
2�b� xu is plotted against du for all k-mers in E. coli, k=2 to
6. It is seen the vast majority of data fall on the straight line
xu=du, which suggests that in E. coli the sites of at least most
the shorter k-mers are substantially uncorrelated �this does
not conflict with the known presence of long-range correla-
tion in genomes �6–11��. This was shown to be a general
property of 41 randomly complete bacterial genomes for k
=2 to 6 �26� �because du cannot be statistically reliably ex-
tracted unless fu
1, the study was not extended to k-mers
with k greater than 6�. Note that even when this property
holds for most k-mers, it need not hold for all k-mers.
Known exceptions are some overrepresented k-mers, whose
spatial distributions tend to be highly localized �27�.

C. Genomic � is length independent and nearly universal

We computed �, for 384 complete prokaryotic genomes
�28 archaebacteria and 356 eubacteria� and 402 complete
chromosomes from 28 eukaryotes of lengths ranging from
200 kb to 230 Mb. When computing �, “N-runs,” or gaps in
the chromosome, are spliced out from the sequence. The rice
genome was downloaded from the Rice Annotation Project
Database �28�, and all other sequences from the National

Center for Biotechnology Information genome database �29�,
during the period 26 February to 27 November, 2006. A list
of the 786 genomes/chromosomes studied and basic
properties—length and base composition—are given in the
Order Index Database �OIDB� �30�. We present results for
k=2 to 6 because, mainly due to statistical fluctuation, the k
dependence of � becomes noticeable for larger k’s and in-
creases with k, especially for the shorter chromosomes. Re-

call that the average frequency of a k-mer in an m set is f̄m is

approximately Lm
��� /�m, hence f̄ �m=0�
qkL /2k and f̄ �m=k�


 pkL /k2, and one of them can be very small when p or q is
significantly less than 0.5. For instance, when p=0.3, for a

chromosome �L=� 2 Mb long, f̄ �m=k�
3.4 when k=7 and

0.51 when k=8, which are frequencies too small for reli-
able statistics. Statistical fluctuation for k up to 10 is not a
concern for most of the vertebrate chromosomes, which are
of the order of 100 Mb and have p
0.58. Their order in-
dexes for k=7 to 10 do not differ qualitatively from those
reported here for the smaller k’s. The k=2 to 6 order indexes
for all individual chromosomes are given in tabulated form
in OIDB �30�. Generally, intrachromosomal variation in �
with k, typically within 50%, is less than interchromosomal
variation in �. The situation is similar to that for the random
and E. coli sequences shown in Fig. 1. While a weak k de-
pendence in � simplifies our narrative, a stronger k depen-
dence would not alter our understanding of the matter.
Henceforth we discuss the propertied of k-averaged �. The
results shown in Fig. 3 indicate that genomic �’s systemati-
cally vary neither with sequence length ��a� and �b�� nor with
base composition ��c��. The average and variance of the en-
tire set of genomic data are

ln �g = − 3.49 � 0.65 �8�

or, equivalently �g=0.031−0.015
+0.028 �it is better to express devia-

tion in logarithmic form because � can span many decades�.
The range in Leq, 0.29–4.4 kb, corresponding to the range of
�g is very small when compared to the range of actual se-
quence lengths. For example, if the 4.6 Mb E. coli chromo-
some and the 226 Mb human chromosome 1 were random,
then their �’s would be 4.7�10−4 and 6.7�10−5, as opposed
to the actual values of 0.049 and 0.038, respectively. Chro-
mosomes from the same organism have highly similar word
contents hence highly similar �’s. The variances seen in Fig.
3, where they are substantial, are caused by differences
among organisms, not among chromosomes from the same
organism. Relative to organisms in other categories, the ver-
tebrates are phylogenetically extremely close and their ge-
nomes, other than differences arising from genome rear-
rangements �31� to which � is insensitive, have a high
degree of similarity. This explains why the �’s of their chro-
mosomes �boxes with log L�7.3 in Fig. 3�b� and the “223
box” at p
0.6 in panel �c�� are concentrated in an extraor-
dinary narrow range 0.033–0.050. There are statistically sig-
nificant differences among the boxes in Figs. 3�b� and 3�c�.
For instance, the P values �from two-sample t tests� for the
ten vertebrates taken as a group paired with the seven boxes
in Fig. 3�b� with 10 �log L
5.8�, 18, 13, 140, 160, 48, and
10 �log L
7.4� chromosomes are 0.0022, 0.043, 
5�10−5,

FIG. 2. �a� Interval distributions of three 4-mers with frequen-

cies fu= f̄ =L /256 ���, 2 f̄ ���, and f̄ /2 ���, respectively, in E. coli
�L=4.6 Mb, p=0.5; solid symbols� and in corresponding random
sequence �hollow symbols�; solid lines express Eq. �7�. �b� Average
interval xu of k-mer u versus du, where −du is the slope of the linear
regression of the logarithm of the interval distribution of u; xu=du if
the distribution is exponential. Data for all k-mers, k=2 to 6, in E.
coli are shown; for each k the number of data and the mean value of
xu are both equal to 4k.
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2�10−5, 0.00015, 
1�10−5, and 0.030, respectively �but
are significantly greater than 0.05 when paired with the other
boxes�. Nevertheless, as is evident from Fig. 3�a�, taken to-
gether, the genomic �’s form a well-defined unimodal distri-
bution without systematic p or L dependence. Figure 4
shows that P values of the boxes in Fig. 3�b� under the null
hypothesis that each is part of a normal distribution defined
by the right-hand side of Eq. �8�. The 37 outlying chromo-
somes with P�0.05, including 14 with 0.04� P�0.05, are
listed in Table II. All except two of the outlying prokaryotic

chromosomes have ��0.01, that is, they are more random
than the norm. There are only two eukaryotes among the
outliers; four of the 16 S. cerevisiae chromosomes have �
�0.01 and eight of the 16 A. mellifera chromosomes have
��0.1, or more ordered than the norm. It would not be
surprising had the genomic �’s spanned several decades, but
it is so when genomes share the common feature of having
equivalent lengths far shorter than their actual lengths, and
have �’s congregate in a comparatively narrow range. For
this reason we refer to �g, defined by Eq. �8�, or equiva-
lently, the range 0.016���0.059, as the universal � of
genomes.

D. Coding and noncoding regions have similar �’s

From each complete sequence, we extracted the genic �in-
cluding introns in eukaryotes� and nongenic parts, then con-
catenated the parts into two separate sequences and com-
puted their order indexes, �cd and �ncd, respectively. The
effect on � from splicing a chromosome to form the concat-
enates can be estimated. Of the four categories of
concatenates—prokaryote/eukaryote and genic/nongenic—
the prokaryote-nongenic concatenates are generally the
shortest and are expected to be the most affected by the
splicing. Consider a prokaryotic chromosome 3 Mb long,
with 3500 genes occupying 88% �a typical value� of the
chromosome. Then the nongenic concatenate will be 360 kb
long with 3500 artificial connecting sites. This will generate
3500� �k−1� k-mers not belonging to the chromosome, or
an estimated �k−1� percent error in �ncd. Possible errors on
�cd and on the �’s of eukaryotic chromosomes are expected
to be smaller. The coding concatenates are built from coding
sequences from a single strand and includes genes in the
positive and negative orientations. Another way to build the
coding concatenate, not adopted here, is to have all the genes
included, say, in the positive orientation. Because the com-
putation of � is in fact a binary scheme �strong versus weak
nucleotides�, the only difference the two concatenates have
on � will again come from the artificial connecting sties
mentioned above. We therefore estimate the difference in �
that may arise from the two different ways of building the
coding concatenate to be not greater than 10%.

Generally, �cd, �ncd, and the � for the whole chromosome
have similar magnitudes. A summary of the ratio �cd /�ncd
for sets of genomes grouped by length is given in Fig. 3�d�.
The genic parts of eukaryotic genomes are further partitioned
into mRNA �exon� and non-mRNA �intron� parts, and their
�’s computed separately. Averaged over sets of organisms,
�mRNA /�nmRNA is of the order of 1 �Fig. 3�e��. In all cases the
differences in � between different parts of a genomes
�single- or multiple-chromosome� is much smaller than that
between genomes and random sequences.

Because noncoding parts �nongenic in prokaryotes and
nongenic plus introns in eukaryotes�, in spite of the fact that
they contain regulation-related sequences, are expected to be
more tolerant to random small mutations �point mutations
and small indels—insertions and delations�, they are ex-
pected to be noticeably more random than coding parts
�genic in prokaryotes and exons in eukaryotes�. That the two

FIG. 3. �a� Order index, �, vs sequence length, L, for 384
prokaryotic genomes �gray �’s�, 402 eukaryotic chromosomes
�black �’s�, and random sequences �line composed of solid �’s�. In
�b�–�f�: box �gray for prokaryotes; black for eukaryotes� height is
given by 25% to 50% values and the range represents 10% to 90%
values; numbers above boxes are numbers of sequences in group;
all �’s are averaged over k=2 to 6. �b� � vs log L. �c� � vs frac-
tional A/T content, p. �d� Ratio of �cd �for genic parts� to �ncd

�nongenic� vs log L. �e� Ratio of �mRNA �mRNA segments� to
�nmRNA �non-mRNA�, averaged over classes of eukaryotes. �f� Ra-
tio of equivalent mutation rate, 	eq, to critical mutation rate, 	c, vs
log L.

FIG. 4. P values of �a� data boxes from Fig. 3�b� and �b� from
Fig. 3�c� being part a normal distribution defined by the right-hand
side of Eq. �8�. The horizontal dashed line indicates P=0.05.
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parts on average have similar �’s is therefore noteworthy. A
closer examination of Fig. 3�d� shows there is not a fixed
relation in randomness between the two parts. Whereas the
nongenic parts in a vast majority of prokaryotes tend to be
slightly more ordered than the genic parts ��ncd��cd�, the
genic parts in most nonvertebrate eukaryotes tend to be more
ordered. Figure 3�e� shows the introns have a clear prefer-
ence for being more ordered than exons ��nmRNA��mRNA� in
insects, and the opposite in plants. In vertebrates the two
parts, either genic and nongenic or exon and intron, have
very close to the same randomness. These results suggest
that selection-driven small mutations are not the main
mechanisms deciding randomness and order on a genomic
scale.

It is known that in many species a codon bias exists, and
this may be expected to have an impact on �, especially for
k=3. This effect is not detected in �. A major cause that
weakens the codon effect is this: the sliding window used to
count k-mer frequencies travels in one direction and has a
slide of one, so that only one in three 3-mers is a codon. It is
important to realize that � sameness does not imply se-
quence similarity. However, when �cd, �ncd, and the � for
the whole chromosome all have similar magnitudes then it
can be inferred that the word contents in the coding and
noncoding part do not differ significantly.

E. Genomic scaling exponent ��É0 when length
exceeds 50 kb

The left panel of Fig. 5 shows for HS1 and R. baltica
what is generally true for all cases studied: that �̄l, the aver-
age of segmental �l for segments of a fixed length l, tends a
constant when l exceeds 50 kb, with a corresponding de-
crease in the variance in �l. In other words, the genomic �l
is a scale-independent quantity, or

��
�genome� 
 0, �9�

for scales greater than 50 kb, as compared to random se-
quences whose �� is 1/2 �Eq. �2��. This implies that word
contents over two adjacent regions �at large scales� tend to be
more similar than set complementary, for otherwise �̄l would
decrease with increasing l. On the other hand, that �̄l does
decrease noticeably with increasing l when l is less than 10
kb and the relative large variance in �l that persists in HS1
even beyond 50 kb both indicate significant intrachromo-
somal compositional heterogeneity at subchromosomal
scales.

IV. INTERGENOMIC COMPOSITIONAL DIVERSITY

The universality of �g is not a result of intergenomic
compositional homogeneity. To verify chromosome diversity
we map each chromosome to a multidimensional unit s� vec-

TABLE II. Chromosomes belonging to the universal set defined by Eq. �8� with P�0.05.

Name Accession no.a �̄ b P valueb Name Accession no.a �̄ b P valueb

S. aureus 9 strainsc 
4.4�−3� 
3.0�−3� A. marginale 4842 4.45�−3� 3.15�−3�
S. epidermidis 4461 4.87�−3� 4.89�−3� C. felis 7899 5.20�−3� 6.66�−3�
L. johnsonii 5362 5.58�−3� 9.18�−3� S. hemolyticus 7168 5.79�−3� 1.08�−2�
S. epidermidis 2976 6.49�−3� 1.77�−2� M. mobile 163 K 6908 6.80�−3� 2.14�−2�
T. denitrificans 7404 7.12�−3� 2.58�−2� L. acidophilus 6814 7.34�−3� 2.90�−2�
G. sulfurreducens 2939 7.40�−3� 2.99�−2� F. tularensis 7880 7.50�−3� 3.15�−2�
W. succinogenes 5090 7.51�−3� 3.17�−2� C. hydrogenoformans 7503 1.23�−1� 3.20�−2�
M. hungatei 7796 7.75�−3� 3.57�−2� F. tularensis 6570 7.90�−3� 3.84�−2�
C. caviae 3361 7.94�−3� 3.91�−2� M. succiniciproducens 6300 1.15�−1� 4.04�−2�
C. abortus 4552 8.06�−3� 4.14�−2� X. fastidiosa 9a5c 2488 8.12�−3� 4.25�−2�
P. marinus 7335 8.19�−3� 4.37�−2� S. tokodaii 3106 8.47�−3� 4.96�−2�
S. cerevisiae Chr V 6.00�−3� 1.26�−2� S. cerevisiae Chrs XV, III 
7.7�−3� 
3.5�−2�
S. cerevisiae Chr VI 8.43�−3� 4.87�−2� A. mellifera 8 chrs.d 
1.1�−1� 
4.8�−2�
a4842 indicates the accession no. NC_004842.
bThe value 4.4�−3� means 4.4�10−3.
cThe nine strains, in order of increasing P value, are 3923, 2953, 7793, 7795, 2952, 7622, 2951, 2758, and
2745.
dThe eight chromosomes, in order of increasing P value, are XV, X, XII, II, IV, V, I, and XI.

FIG. 5. �Color online� Left panel, average segmental index, �̄l

vs segment length l for the human chromosome I �solid square� and
the R. baltica chromosome �circle�. Right panel, category �number
of chromosomes given above box� statistics of pairwise Hamming
distances between k=5 s� vectors; legends for boxes same as in Fig.
3.
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tor as follows: For given k, the mth component, m=0 to k, of
s� is 0 or 1, respectively, when Lm−Lm

��� is negative or posi-
tive. The maximum Hamming distance between two s� vec-
tors is �k+1, and the maximum value for the rms pairwise
distance, hrms, for a sufficiently large set of vectors is
��k+1� /2. Figure 5, right panel, shows the k=5 results for
hrms for various categories of chromosomes; the median hrms
for eukaryotes, prokaryotes, and all chromosomes are 1.70,
1.41, and 1.60, respectively. Concatenating two chromo-
somes is yet another way to test their word-content similarity
or the lack of it; a sharp drop in the � of the concatenate
indicates significant set complementarity in word content,
hence interchromosomal heterogeneity. Many such cases can
be found and an extreme example is the pair, the 1.23 Mb
Ch. pneumoniae ��=0.0204� and the 1.49 Mb T. whipperlei
��=0.0149�, whose concatenate has �=0.00197. Five other
cases are given in Fig. 7.

V. DEPENDENCE OF � ON INTRACHROMOSOMAL
COMPOSITIONAL HETEROGENEITY

It is known that compositional heterogeneity is prevalent
in genomes �11,32–35�. The extent of this is already sug-
gested by the sizable variances in �l seen in Fig. 5�b�. The
box plots in Fig. 6, where each box gives the statistics of �
of 50 kb segments grouped according to p, explores this
notion further. While 0.01��̄�0.1 for almost all cases, the
range of � and its dependence on p are seen to vary signifi-
cantly from organism to organism. In the case for HS1 �panel
�f��, where the range of � is consistent with what is shown in

Fig. 7 �for l=50 kb�, there is a clear trend of �̄ decreasing
with increasing p. Because GC-rich regions are known to be
richer in genes, this result may be interpreted as indicating
gene-rich regions in HS1 are more ordered than gene-poor
regions. However, this cannot be a general argument because
in the case of D. melanogaster Chr. X �panel �d�� �̄ trends
with p in the other direction. Figure 6 also reveals a second
aspect of intrachromosomal heterogeneity, a wide range of �
values for segments having the same p, as displayed by the
boxes at p=0.6 and 0.65 in C. elegans �panel �e�� and the
p=0.6 box in A. thaliana �panel �c��. Notwithstanding their
significant intrachromosomal variations, local p-specific �’s
mostly fall within the range of �g.

A well-known type of intrachromosomal heterogeneity is
cumulative base skews, or compositional asymmetry, where
�in some genomes� there is a difference in base compositions
of transcripts in the leading and lagging strands �36–39�. The
most discussed compositional asymmetries are the AT skew
��A−T� / �A+T�� and GC skews, that is, deviations from
Chargaff’s second parity rule �21�. Because the relative mag-
nitude of skews are small, of the order of a few percent
�36,37�, this asymmetry is not expected to have a significant
effect on �, which is a coarsed-grained measure. For in-
stance, the eight genomes, given in the descending order of
skew, B. subtilis �high level of skew�, E. coli, H. pylori, T.
pallidum, H. influenzae, M. jannaschii, M. thermoautotrophi-
cum, A. fulgidus, and Synechocystis �almost no skew�
�36,37�, have � values that are 0.036, 0.049, 0.084, 0.012,
0.051, 0.033, 0.026, and 0.069, respectively. Our study of
skews in complete genome �40� indicates the lack of corre-
lation between skew and � to be a general trend.

VI. GENOME AT THE EDGE OF CHAOS

The ratio 	eq��� /	c is an indication of how close a se-
quence is to being random. Figure 3�f� shows that the overall

FIG. 6. Box plots of � for 50 kb segments obtained from parti-
tion of a chromosome and grouped in 0.05 p intervals; numeral
indicates number of segments represented by each box. �a� E. coli;
�b� S. pombe chr. III; �c� A. thaliana chr. I; �d� D. melanogaster chr.
X; �e� C. elegans chr. I; �f� H. sapiens chr. I.

FIG. 7. �Color online� The function I�z� �Eq. �10�� plotted as a
function of z=�0.21; �; log10 Leq���; 	eq��� �in units of b−1�. Co-
ordinates for 384 prokaryotic and 402 eukaryotic chromosomes are
shown in gray and black, respectively, and those for the six classics
�stars�, two long repeats of short sentences �diamonds�, five bichro-
mosome concatenates �hexagons�, and two � sequences �triangles�.
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average of the ratio is 0.45�0.11, meaning that the typical
genomic equivalent mutation rate is about 1.8 b−1, as com-
pared to the critical mutation rate of approximately 4 b−1

�that would randomize the genome�. Thus, for example, a
typical worm �C. elegans� chromosome, with a length of
about 17 Mb, is as random as an initially ordered 17 Mb
sequence after having undergone 31 million random muta-
tions. A mutation rate of 1.8 b−1 seems quite high, since one
might well expect a sequence that has experienced an aver-
age of one mutation per site to be random. We think the term
“at the edge of chaos” is a useful qualitative description of
the state of randomness of genomes, namely, there are close
to being but not quite random, and conveys the idea intended
for the phrase “life at the edge of chaos.” We emphasize that
our inference is based on an observation of empirical data
and does not have the force of a theoretical model with pre-
dictive power. For instance, we have not made the necessary
study to say whether there is indeed a sharp edge—say, a
first-order transition—beyond which the sequence is too un-
ordered to code for life.

VII. ORDER INDEX OF CLASSICAL LITERARY TEXTS

In order to see if one may establish a deeper associate
between �g with the fact that genomes are carriers of bio-
logical codes, we computed �’s for four sets of artificial
pseudogenomes converted from nongenomic sequences: �1�
six literary classics ranging in length from 0.08 to 6 million
letters: The Bible, King James Versiov �3.22 million letters�;
Sonnets, Shakespeare �0.08�; Oliver Twist, Dickens �0.69�;
Remembrance of Things Past �English translation�, Proust
�5.92�; Ulysses, Joyce �1.19�; A Moveable Feast, Heming-
way �0.19�. �2� long repeats �1 M times� of the two short
sentences, “Though this be madness, yet there is method
in’t” �Hamlet� and “All the perfumes of Arabia will not
sweeten this little hand” �Macbeth�; �3� five bichromosome
concatenates: 2491–4572, 2179–4551, 0912–7354, 4432–
5072, and 0919–4605, where, e.g., the number 2491 desig-
nates the NCBI genome sequence access number
NC_002491; �4� two sequences, 1 M �41� and 100 M �42�
digits, respectively, of the irrational number �. The �’s of
the pseudogenomes are given in Fig. 7.

In sets �1� and �2� the conversion of the literary texts to
pseudogenomes is made by discarding all nonalphabetic
symbols in a text and using an alphabet-to-base mapping
�although a binary mapping is sufficient for our purpose�
constructed according to two basic rules: �i� each category of
alphabets is as much as possible evenly distributed to the two
groups A/T and C/G, and to a lesser extent, to the four nucle-
otides; �ii� the resulting six pseudogenomes satisfy Char-
gaff’s second parity rule �21� approximately. The categories
of alphabets we used are as follows: �aeiouy�, �bmpfvw�,
�cszdlnt�, and �ghjkqxr�. Rule �i� avoids mappings that can-
not produce words, such as those that map all the vowels to
A/T. The mapping used here, which yields nearly even-based
pseudogenomes for the six classics, is �adjlsy� to “A,” �chi-
opq� to “C,” �efgnvxz� to “G,” and �bkmrtuw� to “T.” This
maps each of the six classics to a pseudogenome with p
=0.50�0.02 �pA
 pC
 pG
 pT=0.250�0.007�, and the

Hamlet and Macbeth sentences to p=0.50 and 0.56 se-
quences, respectively. The range of �the k-averaged� � for
the classics is 0.036–0.064, which lies within the range of
�g. We have computed the �’s of many more long text and
used alternative mappings obeying rules �i� and �ii� yielding
pseudogenomes with 0.2
 p
0.8, and found that the �’s of
the vast majority of the pseudogenomes lie with the range of
0.02–0.07.

Using the mapping given above to convert the two repeats
in set �2� yields for the pseudogenomic sequences �
0.16
��g and Leq
40 b which, as expected, are properties close
to those of the original short root sentences. The five bichro-
mosome concatenates, whose �’s are of the order of 0.005,
which is considerably less than �g. These examples show
that phylogenetically distant chromosomes can have word
contents that are closer to being set complement than similar,
so that concatenating them can lead to sharply reduced �.
Conversely, concatenating long segments from the same
chromosome, or from two chromosomes that are phyloge-
netically close, typically leaves � little changed.

For the two series of � in set �4� the even and odd digits
are mapped to A/T and C/G, respectively. The pseudoge-
nomic � sequences have Leq’s 0.63 and 280 Mb, respec-
tively. Since these are close to their true sequence length, this
implies that the � series are essentially random.

VIII. HYPOTHESIS

�
�g is a signature for high information capacity. We
observe a general trend: long sequences with high informa-
tion content—genomes and pseudogeneomes converted from
literary classics—tend to have �
�g, and Leq’s of the order
of 0.29–4.4 kb, several orders of magnitude shorter than their
true lengths. In comparison, long sequences with low infor-
mation content either �the long repeats� have � significantly
greater than �g because they are too ordered, in which case
they have even shorter Leq’s, or �the � series� have � signifi-
cantly less than �g because they are too random, with Leq’s
more closely tracking their true lengths. Series such as those
of � are sometimes cited as examples of high complexity.
Here we can make a distinction between high complexity
and high information content. Since the meaning of � can be
simply stated: “the ratio of circumference of a circle to its
diameter,” the information content of a long � series may
indeed be said to be low, even though the textual structures
of the series are extremely complex. The situation with the
bichromosome concatenates is more complicated. In each
case, the two component chromosomes each has high infor-
mation content, but in the composite the information is ad-
mixed so as to reduce �; just as a message written in two sets
of codes will have some information garbled.

Our observation is consistent with the generally accepted
understanding: if a text has close to the maximum informa-
tion density then its textual structure cannot be either too
random or too ordered. We therefore propose the following
hypothesis: the criteria �
�g and Leq /L�10−2 �L is the true
length� are necessary conditions for high information-
capacity sequences. We speak of information capacity in-
stead of information content because � only characterizes
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the textual structure of a sequence, but is not a direct mea-
sure of its information. To give the hypothesis mathematical
form we construct a function I�z�, intended as a relative in-
dicator of the information capacity of a sequence and satis-
fying the criteria: the variable z is a scaling function of �
with z 	�=0=0 and z 	�=1=1, and I has two minima at I�0�
= I�1�=0 and a maximum at z 	�=�g

=0.5. The simplest solu-
tion is

I�z� = − z ln z − �1 − z�ln�1 − z�; z = �0.21. �10�

Other than the rescaling of �, which gives equal space �in z�
to more ordered ����g� and more random ����g� se-
quences, I reminds one of entropy, except that instead of
only one minimum at the random limit, it has two minima
representing both ordered and random sequences. Figure 7
shows I�z� plotted against z together with symbols indicating
the coordinates of the sequences discussed in the text above.
In addition, three other sets of abscissas are given: �,
log10 Leq��� �Eq. �3��, and 	eq��� �Eq. �6��. As intended, Fig.
7 shows the high information-content sequences—genomes
and literary texts—concentrated around the region, defined
by �g
0.015–0.059, log Leq,g
2.5–3.7 and 	eq,g

1.4–2.1, near the peak of the I curve �0.670
 I� Imax
=0.693� and equally far removed from the highly random
�z
0� and highly ordered �z
1� regions. Roughly, one may
set �edge=0.1, corresponding to 	eq���=1.2 b−1, as the be-
ginning of the edge of chaos.

Sequence growth by segmental duplication has small
equivalent lengths. Although genomes and literary texts
share the property of having �
�g, we cannot assume they
were produced similarly. Whereas the classical texts were
written with deliberation, at least large parts of genomes
were “blindly” formed. Considering that genomes have very
short equivalent lengths and that they have extreme scales
invariance ���
0�, segmental duplication likely is an im-
portant characteristic of the growth process. Segmental du-
plication �43–45� is known as an important mechanism in
genome growth and evolution. From the physics perspective
segmental duplication is the easiest way for genomes to ac-
quire length while retaining a short equivalent length. From
the biological perspective, duplication is the common expla-
nation for proteins acquiring new functions without destroy-
ing old ones, and duplication events provide the only com-
mon explanation for the promiscuity of common protein
domains. Figure 8 shows the �’s from model sequences gen-
erated in a minimal model of genome growth based on ran-
dom segmental duplication �46�. Here the term random refers
to the length of the duplicated segment and the sites on the
sequence where it is selected and where the duplication is
inserted. We choose a random process for the model because
it is the simplest possible procedure; we know that �Fig. 2� at
least the shorter k-mers in genomes are essentially randomly
placed �26�; genes, most of which are homologs and there-
fore produced by duplications, are to a first order of approxi-
mation randomly placed over a chromosome �see, however,
�47��; it is consistent with our finding that �’s for coding and
noncoding regions within a genome are nearly equal, which
is to say that to the extent segmental duplication affects �, it
has no preference in what region it acts on; it is consistent

with the notion that mutation events in genomes are pre-
dominantly neutral �48,49�. The model has only three param-
eters: L0, the length of a random sequence taken to be the

initial state of the sequence; d̄, the average length of the
duplicated segments; and r	, the rate of point mutations per
length administered after—this feature is chosen for
simplicity—the completion of growth. Owing to the random
features in the model, high diversity among sequences is
guaranteed but each sequence is deficient in intrasequence
compositional heterogeneity. Long-range correlation �6–11�,
closely related to long-range intragenomic compositional
heterogeneity, can be accounted for when a suitable propor-
tion of the duplication events are made tandem �11�. Here,
for simplicity, tandem duplication is left out; it has only a
small effect on a whole-genome �.

The results shown in Fig. 8 are those of sequences gener-

ated from a single set of parameters: L0=64 b, d̄=1000 b,
and r	=0.73 b−1. These values were neither chosen nor ad-
justed for this study, but were previously set in a separate
study of statistical properties of genomes—including the
“Shannon information” �20�—not directly related to �. The
�’s of all the model sequences are seen to congregate around
�g. Averaged over all model sequences, �model=0.022−0.011

+0.023

and Imodel=0.680�0.013. The model �’s are essentially in-

dependent of sequence length and depend mildly on d̄ and r	

�within reasonable ranges� but sensitively on L0. We find that
it is not difficult to get sequences have �model congregating
around some common �� provided the dominant growth pro-
cess is segmental duplication and the sequences have a com-

mon L0 and similar d̄ and r	. Hence we say that yielding
�model
�� is a robust property of the growth model.

Is �g a fixed point of genome growth dynamics? Given
that genome-length sequences can easily have ���g and
Leq
Leq,g, it is worthwhile asking how genomes were driven
to have their �’s congregate in the small region near �g. One
possibility is to view �g as a fixed point—more appropri-
ately, a fixed basin, in � space—of a robust dynamical pro-
cess of genome growth and evolution. �We emphasize that
for every sequence length this fixed point in � space maps to
many and possibly huge regions in sequence space which
however sum to a minute portion of the entire sequence

FIG. 8. Order index versus p of model sequences generated
from a minimum growth model �46�. Lengths of the sequences are
approximately 2 Mb and each p-interval bin gives the result of 20
sequences.
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space.� As an analogy, we may view ��ran�
L−1/2 �Eq. �2��
as the fixed point of the processes of random point mutation
and/or random base-by-base growth. The discussion in the
last section suggests random segmental duplication, which
can robustly drive genomic �’s to some fixed point ��, as a
strong candidate for the dominant mechanism of genome
growth. Other mechanisms, such as selection-driven point
mutations and small indels, necessarily contributed to ge-
nome evolution, but these by themselves are not robust
enough for driving genomic � toward �g and cannot explain
the �’s of the noncoding parts, nor can they yield as high a
rate for growth and evolution as segmental duplication does
�43–45�. All of this seems to point to a deeper level of in-
sight on the dynamics of genome growth: the dominance of
random segmental duplication as a dynamical process for
genome growth may itself be a product of natural selection.
Once this selection is made the matter of driving genomes to
the correct fixed point becomes the relatively easy task of
settling on the correct detailed characteristics—represented

by parameters in the growth model with appropriate
values—so that the fixed point is indeed �g. In its turn this
fixed point is selected because it characterizes necessary
structural characteristics of long sequences having maximum
information capacity. Robustness aside, another important,
perhaps even decisive, factor for natural selection to choose
this path is its inherent speed; the process is very fast be-
cause of its random nature. Of course, the actual acquisition
of information content, as opposed to the building of infor-
mation capacity, still needs to be carried out by the much
slower processes of selection-driven point mutations and
indels.

ACKNOWLEDGMENTS

This work was partly supported by Grants No. 96-2112-
M-008-025 and No. 97-2112-M-008-013 from the National
Science Council �ROC� and the Cathy General Hospital-
NCU Collaboration Grant No. 97-CGH-NCU-A1.

�1� C. G. Langton, Physica D 42, 12 �1990�.
�2� J. P. Crutchfield and K. Young, in Complexity, Entropy, and the

Physics of Information, edited by W. H. Zurek �Addison-
Wesley, Redwood City, CA, 1990�.

�3� M. Mitchell, P. T. Hraber, and J. P. Crutchfeld, Complex Syst.
7, 89 �1993�.

�4� S. A. Kauffman, The Origins of Order, Self-Organization, and
Selection in Evolution �Oxford University, London, 1993�.

�5� S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, Biochem. J.
351, 95 �2000�.

�6� W. Li and K. Kaneko, Europhys. Lett. 17, 655 �1992�.
�7� C. K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, M.

Simons, and H. E. Stanley, Phys. Rev. E 47, 3730 �1993�.
�8� R. F. Voss, Phys. Rev. Lett. 68, 3805 �1992�.
�9� N. E. Israeloff, M. Kagalenko, and K. Chan, Phys. Rev. Lett.

76, 1976 �1996�.
�10� Z. G. Yu, V. Anh, and K. S. Lau, Phys. Rev. E 64, 031903

�2001�.
�11� P. W. Messer, P. F. Arndt, and M. Lassig, Phys. Rev. Lett. 94,

138103 �2005�.
�12� K. W. Church and J. I. Helfman, J. Comput. Graph. Statist. 2,

153 �1993�.
�13� X. Lu, Z. Sun, H. Chen, and Y. Li, Phys. Rev. E 58, 3578

�1998�.
�14� N. Nagai, K. Kuwata, T. Hayashi, and S. Era, Jpn. J. Physiol.

51, 159 �2001�.
�15� T. Y. Chen, L. C. Hsieh, and H. C. Lee, Comput. Phys. Com-

mun. 169, 218 �2005�.
�16� P. J. Deschavanne, A. Giron, J. Vilain, G. Fagot, and B. Fertil,

Mol. Biol. Evol. 16, 1391 �1999�.
�17� B. L. Hao, H. C. Lee, and S. Y. Zhang, Chaos, Solitons Frac-

tals 11, 825 �2000�.
�18� R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin,

C. K. Peng, M. Simons, and H. E. Stanley, Phys. Rev. Lett. 73,
3169 �1994�.

�19� H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Halvin, C.

K. Peng, and M. Simons, Physica A 273, 1 �1999�.
�20� H. D. Chen, C. H. Chang, L. C. Hsieh, and H. C. Lee, Phys.

Rev. Lett. 94, 178103 �2005�.
�21� R. Rudner, J. D. Karkas, and E. Chargaff, Proc. Natl. Acad.

Sci. U.S.A. 60, 921 �1968�.
�22� V. V. Prabhu, Nucleic Acids Res. 21, 2797 �1993�.
�23� S. J. Bell and D. R. Forsdyke, J. Theor. Biol. 197, 51 �1999�.
�24� C. H. Chang, L. C. Hsieh, T. Chen, H. D. Chen, L. Luo, and H.

C. Lee, J. Bioinf. Comput. Biol. 3, 587 �2005�.
�25� P. Bernaola-Galvan, J. L. Oliver, and R. Roman-Roldan, Phys.

Rev. Lett. 83, 3336 �1999�.
�26� W.-L. Fan, Master’s thesis, National Central University, 2004

�http://sansan.phy.ncu.edu.tw/~hclee/rpr/FanWL2004.pdf�.
�27� S. Hampson, D. Kibler, and P. Baldi, Bioinformatics 18, 513

�2002�.
�28� Rice Annotation Project Database �http://rapdb.lab.nig.ac.jp/�.
�29� National Center for Biotechnology Information Genome Data-

base �http://www.ncbi.nlm.nih.gov/�.
�30� Order Index Database �http://sansan.phy.ncu.edu.tw/~kensinro/

OrdInd/order_index.htm�.
�31� P. Pevzner and G. Tesler, Genet. Res. 13, 37 �2003�.
�32� G. Bernardi, B. Olofsson, J. Filipski, M. Zerial, J. Salinas, G.

Cuny, M. Meunier-Rotival, and F. Rodier, Science 228, 953
�1985�.

�33� M. P. Francino and H. Ochman, Nature �London� 400, 30
�1999�.

�34� A. Nekrutenko and W. H. Li, Genome Res. 10, 1986 �2000�.
�35� G. Bernardi, Structural and Evolutionary Genomics: Natural

Selection in Genome Evolution �Elsevier, Amsterdam, 2005�.
�36� J. R. Lobry, Mol. Biol. Evol. 13, 660 �1996�.
�37� J. Mrazek and S. Karlin, Proc. Natl. Acad. Sci. U.S.A. 95,

3720 �1998�.
�38� J. M. Freeman, T. Plasterer, T. F. Smith, and S. C. Mohr,

Science 279, 1827 �1998�.
�39� S. L. Salzberg, A. J. Salzberg, A. R. Kerlavage, and J. F.

Tomb, Gene 217, 57 �1998�.

KONG et al. PHYSICAL REVIEW E 79, 061911 �2009�

061911-10



�40� Inverse Symmetry Database �http://sansan.phy.ncu.edu.tw/
kensinro/Index.htm�.

�41� First 1 m digits of � �http://www.exploratorium.edu/pi/Pi10-
6.html�.

�42� First 100 m digits of � �http://crd.lbl.gov/dhbailey/expmath/
software/�.

�43� M. Lynch, Science 297, 945 �2002�.
�44� J. A. Bailey, Z. Gu, R. A. Clark, K. Reinert, R. V. Samonte, S.

Schwartz, M. D. Adams, E. W. Myers, P. W. Li, and E. E.

Eichler, Science 297, 1003 �2002�.
�45� L. Zhang, H. H. Lu, W. Y. Chung, J. Yang, and W. H. Li, Mol.

Biol. Evol. 22, 135 �2005�.
�46� L. C. Hsieh, L. F. Luo, and H. C. Lee, AAPPS Bull. 13, 22

�2003�.
�47� M. J. Lercher, A. O. Urrutia, and L. D. Hurst, Nat. Genet. 31,

180 �2002�.
�48� M. Kimura, J. Mol. Evol. 16, 111 �1980�.
�49� Y. X. Fu and W. H. Li, Genetics 133, 693 �1993�.

QUANTITATIVE MEASURE OF RANDOMNESS AND ORDER… PHYSICAL REVIEW E 79, 061911 �2009�

061911-11


